

Enrichment: Journal of Management, 12 (2) (2022) 1960-1970 Published by:Institute of Computer Science (IOCS)

Enrichment: Journal of Management

Journal homepage:www.enrichment.iocspublisher.org

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III

Watson AP Manalu¹, Yusniar Lubis², Syaifuddin³

¹²Universitas Medan Area, Jl. Setia Budi No.79 B, Medan Sunggal, Kota Medan, Sumatera Utara 20112
 ³Universitas Prima Indonesia, Jl. Sekip, Kec. Medan Petisah, Kota Medan, Sumatera Utara 20111

ARTICLEINFO	ABSTRACT
<i>Keywords</i> : Employee Performance, Job Satisfaction, workloads, Work Stress.	This study to examine the effect of workload on job satisfaction, workstress on job satisfaction, examine the effect of workload and work stress on job satisfaction, workload on employee performance, work stress on employee performance, job satisfaction on employee performance, workload and work stress on employee performance through job satisfaction in Rubber Plantation Serdang II District, PTPN III. The sample in this study are 82 people. The analytical method used in this research using multiple linear regression analysis. The result of the direct influence test shows that workload has a negative effect on job satisfaction, work stress has a negative effect on job satisfaction, workload and work stress have an influence on job satisfaction, workload has a negative effect on employee performance, work stress has a negative effect on employee performance, job satisfaction has a positive effect on employee performance and the effect of workload, job stress and job satisfaction has a positive effect on employee performance. The indirect effect that occurs in this study is that job satisfaction is only able to become a pseudo- mediator on employee performance.
E-mail: watson.apm@gmail.com	Copyright © 2020 Enrichment : Journal of Management.All rights reserved

1. Introduction

PT. Perkebunan Nusantara III (Persero) Medan or also abbreviated as PTPN III (Persero), is one of 14 Plantation State-Owned Enterprises (BUMN) which is engaged in plantation business, processing and marketing of plantation products. The company's business activities include the cultivation of rubber plants which have plantations in various areas in North Sumatra, especially the Serdang II District, PT. Perkebunan Nusantara III focuses on the Ginting Nest Garden and Sei Putih Garden.

Table1Dry Rubber Production January-July													
		January-Ju	ly 2018		Janua	ary-July 201	l9 Ja	nuai	ry-July 2020	Janua	ry-July 2021		
andan			Produ	uction		Product	tion		Production		Production		
Garden HK		HK	(Thou	(Thousand HK Kg Dry)		(Thous	and H	К	(Thousand	HK	(Thousand		
						Kg Dry)			Kg Dry)		Kg Dry)		
Total	53.198	1,404,652	42,184	1,348,78	8	43.211	1,251,9	31	39,421	1,04	45,716		
Average	7,600	200,665	6.026	192,684	ł	6.173	178,847		5,632	14	9,388		
Total	74.798	1,085,152	67,682	67,682 1,244,802		34.104	1,155,848		1,155,848		32,371	85	8,674
Average	10,685	155.165	9.668	177,829)	4.872	165,121		4.624	122.668			
	Average Total	Total 53.198 Average 7,600 Total 74.798	January-Ju arden HK Total 53.198 1,404,652 Average 7,600 200,665 Total 74.798 1,085,152	arden January-July 2018 Produ HK (Thou Kg I Total 53.198 1,404,652 42,184 Average 7,600 200,665 6.026 Total 74.798 1,085,152 67,682	January-July 2018 Production HK (Thousand Kg Dry) Kg Dry) Total 53.198 1,404,652 42,184 1,348,78 Average 7,600 200,665 6.026 192,684 Total 74.798 1,085,152 67,682 1,244,80	January-July 2018 January-July 2018 arden Production HK (Thousand HK Kg Dry) Total 53.198 1,404,652 42,184 1,348,788 Average 7,600 200,665 6.026 192,684 Total 74.798 1,085,152 67,682 1,244,802	January-July 2018 January-July 2018 arden Production Production HK (Thousand HK (Thousand Kg Dry) Kg Dry Kg Dry Total 53.198 1,404,652 42,184 1,348,788 43.211 Average 7,600 200,665 6.026 192,684 6.173 Total 74.798 1,085,152 67,682 1,244,802 34.104	January-July 2018 January-July 2019 January-July 2019	January-July 2018 January-July 2019 January July 2019 January 2019 <thjanu 2019<="" th=""></thjanu>	January-July 2018 January-July 2019 January-July 2020 arden Production Production Production HK (Thousand HK (Thousand HK Kg Dry) Kg Dry) Kg Dry) Kg Dry) Total 53.198 1,404,652 42,184 1,348,788 43.211 1,251,931 39,421 Average 7,600 200,665 6.026 192,684 6.173 178,847 5,632 Total 74.798 1,085,152 67,682 1,244,802 34.104 1,155,848 32,371	January-July 2018 January-July 2019 January-July 2020 January-July 2020 arden Production Production Production Production HK (Thousand HK (Thousand HK (Thousand HK Kg Dry) Kg Dry) Kg Dry) Kg Dry) Kg Dry) 1,00 Total 53.198 1,404,652 42,184 1,348,788 43.211 1,251,931 39,421 1,00 Average 7,600 200,665 6.026 192,684 6.173 178,847 5,632 14 Total 74.798 1,085,152 67,682 1,244,802 34.104 1,155,848 32,371 85		

Source: Serdang II District PT. Perkebunan Nusantara III

It can be seen in the table above, dry rubber production from 2018 to 2021 continues to decline almost every year. With an average monthly decrease of 25% from 2018. The same thing can be seen in Sei Putih gardens with an average decrease of 20.8%.

The phenomenon of workload in PT. Perkebunan Nusantara III (Persero) Serdang II District, which is based on increasing dry rubber production, then in 2021 a policy is made to harvest wet rubber at 04.00 WIB with additional lighting equipment and Extra Fooding for penderes employees. Another phenomenon that occurs is where employees experience increased work stress with increasing workloads that occur.Job stress is an important aspect for the company, especially its relation to employee performance. In the short term, stress that is left alone without serious handling from the company can make employees depressed, unmotivated and frustrated causing employees to work not optimally so that their performance will be disrupted. In the long term, employees cannot withstand work stress, so they are no longer able to work for the company. In a more severe stage, stress can make employees sick or even resign (turnover) and can cause work accidents.

Employees are required to give their performance, where by increasing the individual performance of each employee, the better it is expected to have a positive impact on the company's performance. Employee performance can be traced from employee attitudes such as job satisfaction. Job satisfaction is known to affect employee performance. There are several factors that can affect employee performance such as satisfaction with supervision, promotion, pay, working conditions, organizational commitment, overall satisfaction and work experience.

2. Methods

This research is an explanatory survey research that aims to examine the effect of each variable in this study, the research data approach used in this study is a quantitative data approach. The population in this study were all employees of District II Serdang PTPN III. The sampling technique used in this study used a purposive sampling technique with the following criteria: 1) Status as a permanent employee; 2) Has worked for at least 3 years; 3) Working on a rubber plantation. The number of employees who participated in this study amounted to 459 people. The operationalization of the variables in this study used a questionnaire distributed through a questionnaire. The analytical method used in this research is using the Multiple Linear Regression analysis method with the Spss statistical tool.

3. Results and Discussion

3.1 Characteristics of Research Respondents

Figure 2. Characteristics of Respondents Based on Age

Based on Figure 2, it is obtained information that the respondents of implementing employees who work as cranes at Kebun Sei Putih PTPN III are aged between 25-27 years, totaling 11 people. There are

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III (**Watson AP Manalu, et al**.)

33 employees aged 30-35 years, 14 employees aged 36-40 years. Furthermore, there are 10 employees aged 41-45 years, and employees aged 46-50 years are 8 people and employees > 50 years are 6 people.

3.2 Research Instrument Test

a. Classic assumption test

1) Normality test

The purpose of the normality test is to test whether in the regression model the distribution of data follows or approaches the normal distribution, namely the distribution of data with a bell shape. One way to see normality is to look at the histogram graph and the normal pp plot graph, which compares two observations with a distribution that is close to a normal distribution. The following are the results of normality testing of pp plots and histograms.

Figure 2PP Normality Test Results Plot Equations X1 and X2 Against Y Source: Processed Data

Based on the results of the PP Plot test, it was found that the plot spreads along a diagonal line so that it can be concluded that the research equation meets the assumption of normality.

Figure 3Histogram Normality Test Results Equation X1 and X2 Against Y Source: Processed data

Based on the results of the Histogram test, it was found that the curve formed a perfect bell so it can be concluded that the equation of this study meets the assumption of normality

	One-Sample Kolmogorov-		
		Unstandardized Residual	
N		82	
Normal Darram atoms h	mean	.0000000	
Normal Parameters, b	Std Deviation	1.16271583	
	Absolute	.096	
Most Extreme Differences	Positive	.066	
	negative	096	
Test Statistics	-	.096	
asymp. Sig. (2-tailed)		.057c	

Table 2 Kolmogorv Smirnov Normality Test Equation	I
One-Sample Kolmogorov-Smirnov Test	

b. Calculated from data.

c. Lilliefors Significance Correction.

Based on the results of the Kolmogrov Smirnov test, the Asym value is obtained. Sig (2-tailed) > 0.05 so it can be concluded that the research equation meets the assumption of normality.

Figure 4PP Normality Test Results Plot Equations X1, X2 and Y Against Z

Based on the results of the PP Plot test, it was found that the plot spreads along a diagonal line so that it can be concluded that the research equation meets the assumption of normality.

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III (Watson AP Manalu, et al.)

Based on the results of the Histogram test, it was found that the curve formed a perfect bell so that it could be concluded that the equation of this study met the assumption of normality.

Table 3. Kolmogorv Smirnov Normality Test Equation II

One-Sample Kolmogorov-Smirnov Test								
		Unstandardized Residual						
N		82						
Normal Daramatara h	mean	.0000000						
Normal Parameters, b	Std. Deviation	1.05346369						
	Absolute	.134						
Most Extreme Differences	Positive	.134						
	negative	060						
Test Statistics		.002						
asymp. Sig. (2-tailed)		.501c						
a. Test distribution is Normal.								

b. Calculated from data.

c. Lilliefors Significance Correction.

Based on the results of the Kolmogrov Smirnov test, the Asym value is obtained. Sig (2-tailed) > 0.05 so that it can be concluded that the research equation meets the assumption of normality.

2) Multicollarity Test Results

VIF	
3.322	
3.322	
	3.322

Based on the results of the multicollinearity test, it was found that the tolerance value > 0.10 and VIF < 10, so it can be concluded that there is no multicollinearity in this equation.

Table 5 Multicollarity Test of Equation	II
---	----

Collinearity Statistics	
Tolerance	VIF
.241	4.143
.241 .284	3,519
.372	3,519 2,689

Based on the results of the multicollinearity test, it was found that the tolerance value > 0.10 and VIF < 10, so it can be concluded that there is no multicollinearity in this equation.

3) Heteroscedasticity Test Results

Figure 6 Heteroscedasticity Test of Equation I

Based on the results of the heteroscedasticity test, the results show that the plots are spread out and do not form a certain pattern so that it can be concluded that there is no heteroscedasticity in this equation.

Figure 7 Heteroscedasticity Test of Equation II

Based on the results of the heteroscedasticity test, the results show that the plots are spread out and do not form a certain pattern so that it can be concluded that there is no heteroscedasticity in this equation.

b. Hypothesis test

In the first sub-structure test, the researcher will examine the effect of the variable Effect of Workload (X1) and Work Stress (X2) on employee performance (Z) through employee satisfaction at PTPN III employees. The following are the results of multiple linear regression analysis using SPSS.

		L	oefficientsa	1						
Unstandardized Coefficients		Standardized Coefficients	÷	Sia	Correlations			Collinearity Statistics		
В	Std. Error	Beta	— t	Sig.	Zero- order	Partial	Part	Tolerance	VIF	
11.901	2,140		5.562	.000						
340	.077	552	-4.418	.000	.779	445	303	.301	3.322	
219	.101	270	-2.162	.034	.732	236	-148	.301	3.322	
	Coefficien B 11.901 340 219	Coefficients B Std. Error 11.901 2,140 340 .077	Coefficients Coefficients B Std. Error Beta 11.901 2,140 340 .077 552 219 .101 270	Coefficients Coefficients t B Std. Error Beta 5.562 340 .077 552 -4.418 219 .101 270 -2.162	Coefficients Coefficients t Sig. B Std. Error Beta 5.562 .000 340 .077 552 -4.418 .000 219 .101 270 -2.162 .034	Coefficients Coefficients t Sig. Correlat B Std. Error Beta t Sig. Zero-order 11.901 2,140 5.562 .000 .000 340 .077 552 -4.418 .000 .779 219 .101 270 -2.162 .034 .732	Coefficients Coefficients t Correlations B Std. Error Beta t Sig. Zero- order Partial 11.901 2,140 5.562 .000 340 .077 552 -4.418 .000 .779 445 219 .101 270 -2.162 .034 .732 236	Coefficients Coefficients Correlations B Std. Error Beta t Sig. Zero- order Partial Part 11.901 2,140 5.562 .000 .077 552 -4.418 .000 .779 445 303 219 .101 270 -2.162 .034 .732 236 -148	Coefficients Coefficients<	

Table 6 Testing of Multiple Regression Analysis Equation I; X1 and X2 Against Y

a. Dependent Variable: Job Satisfaction

Y = 11.901 - 0.552 X1 - 0.270 X2

Based on multiple linear regression analysis, the results showed that the workload and work stress variables had a negative effect on job satisfaction. And the biggest influence on job satisfaction is workload.

 $\label{eq:constraint} \textbf{Table 7} \ \textbf{Testing of Multiple Regression Analysis Equation II; X1.X2.Y and Z}$

Model	Unstandardized Standardized Coefficients Coefficients			+		Correlations			Collinearity Statistics	
Mouel	В	Std. Error	Beta	- t	Sig.	Zero- order	Partial	Part	Tolerance	VIF
¹ (Constant)	18,947	2,302		8.232	.000					
Workload	-179	.078	371	-2.281	.025	.506	250	182	.241	4.143
Work stress	459	.095	723	-4,828	.000	.669	480	385	.284	3,519
Job satisfaction	.274	.103	.350	2,670	.009	.591	.289	.213	.372	2,689

a. Dependent Variable: Employee Performance

Z = 18,947 - 0.371 X1 - 0.723X2 + 0.350 Y

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III (Watson AP Manalu, et al.) Based on multiple linear regression analysis, the results show that the variables of workload and work stress have a negative effect on employee performance. While the variable job satisfaction has a positive influence on employee performance.

1) Partial Hypothesis Testing

 Table 8 Partial Hypothesis Testing Equation I

 Coofficientse

			CO	efficientsa						
Model	Unstandardized Coefficients		Standardized Coefficients	+	Sig.	Correlations		Collinearity Statistics		
	В	Std. Error	Beta	t	Jig.	Zero- order	Partial	Part	Tolerance	VIF
¹ (Constant)	11.901	2,140		5.562	.000					
Workload	340	.077	.552	-4.418	.000	.779	445	303	.301	3.322
Work stress	219	.101	.270	-2.162	.034	.732	236	-148	.301	3.322

a. Dependent Variable: Job Satisfaction

In this equation, the t-table value is 1.29 and based on the results of partial significance testing, it is found that t-count > t-table and sig value <0.05, so it can be concluded that workload and work stress have a negative and significant effect on job satisfaction.

Table 9 Partial Hypothesis Testing Equation II Coefficientsa

			Coer	ficientsa						
Model	Unstandardized Coefficients		Standardized Coefficients		Sig.	Correlations			Collinearity Statistics	
Model	В	Std.Error	Beta	t	Jig.	Zero- order	Partial	Part	Tolerance	VIF
¹ (Constant)	18,947	2,302		8.232	.000					
Workload	-179	.078	371	-2.281	.025	.506	250	182	.241	4.143
Work stress	459	.095	723	-4,828	.000	.669	480	385	.284	3,519
Job satisfaction	.274	.103	.350	2,670	.009	.591	.289	.213	.372	2,689

a. Dependent Variable: Employee Performance

In this equation, the t-table value is 1.29 and based on the results of the partial significance test, it is found that the two hypotheses have t-count > t-table and sig < 0.05 but there are t-count values < t-table and sig > 0.05. so it can be concluded that workload and work stress have a negative and significant effect on employee performance while job satisfaction has a positive and significant influence on employee performance.

2) Simultaneous Hypothesis Testing

Table 10 Simultaneous Hypothesis Testing Equation I

ANOVAa										
	Sum of Squares	f	Mean Square	F	Sig.					
ression	184.947	2	92,473	66,713	.000b					
idual	109,505	9	1.386							
al	294.451	1								
i	dual	ression 184.947 dual 109,505	Sum of Squares f ression 184.947 2 dual 109,505 9	Sum of Squares f Mean Square ression 184.947 2 92,473 dual 109,505 9 1.386	Sum of Squares f Mean Square F ression 184.947 2 92,473 66,713 dual 109,505 9 1.386					

a. Dependent Variable: Job Satisfaction

b. Predictors: (Constant), Work Stress, Workload

Based on the results of testing the dimultan hypothesis, an F-table of 3.69 is obtained, then it is also produced that F-count (66,713) > F-table (3.69) and sig < 0.05 so it can be concluded that workload and work stress have a simultaneous and significant effect on job satisfaction. work.

Table 11 Simultaneous Hypothesis Testing Equation II

	ANOVAA											
Model		Sum of Squares	Sum of Squares f Mean Square		F	Sig.						
	Regression	90.888	3	30,296	26,288	.000b						
1	Residual	89,893	8	1.152								
	Total	180,780	1									

a. Dependent Variable: Employee Performance b. Predictors: (Constant), Job Satisfaction, Job Stress, Workload

Based on the results of testing the dimultan hypothesis, an F-table of 3.10 is obtained, then it is also produced that F-count (26,288) > F-table (3.10) and sig < 0.05 so that it can be concluded that workload, stress and job satisfaction have a simultaneous and significant effect. on employee performance.

c. Coefficient of Determination Test

Table 12 Coefficient of Determination Test Results Equation I

Model Summaryb												
	5.0	Adjusted R	Std. Error of			Durbin-						
R	R Square	Square	the Estimate	R Square Change	F Change	f1	df2	Sig. F Change	Watson			
.793a	.628	.619	1.17734	.628	66,713	2	79	.000	1.335			
	R .793a		Square	R R Square Adjusted R Std. Error of Square the Estimate	R R Square Adjusted R Std. Error of Square the Estimate R Square Change	R R Square Adjusted R Std. Error of Change Square the Estimate R Square F Change Change F Change	R R Square Adjusted R Std. Error of Change Stati. R R Square Square the Estimate R Square F Change f1 Change F Change f1	R R Square Adjusted R Std. Error of Change Statistics Square the Estimate R Square F Change f1 df2	R R Square Adjusted R Std. Error of Change Statistics R R Square the Estimate R Square F Change f1 df2 Sig. Change F Change f1 df2 F Change			

a. Predictors: (Constant), Work Stress, Workload b. Dependent Variable: Job Satisfaction

Based on the coefficient of determination, the R-square value shows that the effect of workload and stress has an effect on job satisfaction of 62.8% (0.628).

Table 13 Coefficient of Determination Test Results Equation II

	Model Summaryb													
Model	_	D.C.	Adjusted	R Std. Error of	Change Statistics						Durbin-			
	R	R Square	Square	the Estimate	R Square Change	F Change	df1	df2	Sig. Change		Watson			
1	.709a	.503	.484	1.07353	.503	26,288	3	78	.000		1.909			
a. Predic	tors: (Con	istant), Job S	atisfaction, J	ob Stress, Workload	l									

b. Dependent Variable: Employee Performance

Based on the coefficient of determination, the R-square value shows that the effect of training, workload, stress and job satisfaction has an effect on employee performance of 50.3% (0.503).

d. Indirect Effect Test

The direct effect of x1 on z is -0.371. While the indirect effect between x1 to z through y is the multiplication of the beta value of x1 to y and the value of beta y to z, the following formula is obtained: $-0.371 \times 0.350 = -0.129$ then the total effect of x1 on z is the direct effect plus the indirect effect. directly then the result is: -0.129 + (-0.371) = 0.050. based on the calculation, the result is that the direct influence value is -0.371 and the indirect influence value is -0.5. Based on the results of these tests, it can be concluded that the value of the direct influence of variable x1 on variable z is greater than the effect of variable x1 on z through y, so it can be concluded that variable y is only able to act as a partial moderator.

The direct effect of x2 on z is -0.723. While the indirect effect between x2 to z through y is the multiplication of the beta value of x1 to y and the value of beta y to z, the following formula is obtained: $0.-723 \times 0.350 = -0.25$ then the total effect of x2 on z is the direct effect plus the indirect effect, the results obtained are: $-0.723 \times (-0.25) = -0.973$. based on the calculation, the result is that the direct influence value is -0.723 and the indirect effect value is -0.973. Based on the test results, it can be concluded that the value of the direct influence of variable x2 on variable z is greater than the effect of variable x2 on z through y, so it can be concluded that variable y is able to act as a partial mediator.

1) Variable Descriptive Analysis

Descriptive analysis serves to see the description of the results of research on Workload, Job Stress, Job Satisfaction and Performance. With a total population of 459 people represented by a sample of 82

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III (Watson AP Manalu, et al.) people. To see the answers and provide conclusions about the response to the questionnaire, a descriptive test was carried out with an actual score approach compared to the ideal score and percentage.

In order to make it easier to interpret the variables being studied, the respondents' responses were categorized based on the respondent's response scores. Respondents' responses to each statement item were categorized into 5 categories very good, good, quite good, not good and not good.

Overview of Employee Performance there are six dimensions, namely quantity of work, quality of work, and timeliness. Based on the results of processing data sourced from respondents, the following is the description of employee performance:

Table 14 employee performance												
Dimension			Answei	r		Ideal Score	Dowoontooo					
Dimension	5 (SS)	4 (S)	3 (KS)	2 (TS)	1 (STS)	Actual score	ideal Score	Percentage				
Quantity	75	91	75	52	35	1103	1640	0.67256				
Quality	103	92	64	42	27	1186	1640	0.72317				
Punctuality	76	92	67	51	42	1093	1640	0.66646				
		Tot	al	3382	4920	69%						

The table above shows that the employee's performance is classified as good, this can be seen from the average percentage of the employee performance variable of 69%. The highest score is a statement on the Quality dimension, namely the quality of the tap is getting better because the latex flow rate is getting faster, but this does not increase the quantity, it can be seen that the quantity of rubber production remains in normal conditions with a percentage score actual by 67%.

Table 15 Workload											
Dimension			Answe	r		- Actual score	Ideal	Doncontago			
Dimension	5 (SS)	4 (S)	3 (KS)	2 (TS)	1 (STS)	- Actual score	Score	Percentage			
Physical tasks	64	43	26	13	18	614	820	0.74878			
Mental tasks	35	53	32	29	15	556	820	0.67805			
Time	25	31	44	40	24	485	820	0.59146			
Delegation of duties and authority	61	54	32	12	5	646	820	0.7878			
Psychological factors	18	24	67	24	31	466	820	0.56829			
		Total				2767	4100	67%			

In the table above, it can be seen that the measurement of the Workload variable has five dimensions, namely physical tasks, mental tasks (responsibility), time, delegation of tasks and authority, psychological factors. The dimension that accounts for the largest or best percentage is the dimension of delegation of duties and authority. This indicates that employees carry out their duties according to their main tasks (job description) without any additional tasks outside their responsibilities that they must do in the field. While the factors that contributed to the lowest percentage were psychological factors, namely 56% and time 59%. This is quite sufficient because it is more than >50%, but this indicates that the respondent feels burdened with the current working time.

Table 16 Work stress											
Dimension			Answei	•	A - h		D				
Dimension	5 (SS)	4 (S)	3 (KS)	2 (TS)	1 (STS)	 Actual score 	Ideal Score	Percentage			
Psychologica l	45	72	101	62	48	988	1640	0.60244			
Physique	122	102	42	35	27	1241	1640	0.75671			
Behavior	72	78	62	59	57	1033	1640	0.62988			
		То	tal			3262	4920	66%			

In the table above, we can see that the average percentage representing the work stress variable is 66%. It can be seen that the Psychological dimension of taking action is rated the lowest of all dimensions but is still in the sufficient category, namely 60%, this indicates that employees have feelings of anxiety when they have to go to work and are depressed with their work conditions. This is similar to the workload variable, namely the time and psychological dimensions, where employees feel burdened with the available working time and lack more motivation to excel at the company.

Table 17 Job Satisfaction Table												
Dimension			Answe	r		Ideal Score	Doncontago					
Dimension	5(SS)	4(S)	3(KS)	2(TS)	1(STS)	 Actual score 	Ideal Score	Percentage				
Supportive Working Conditions	46	70	120	54	38	1016	1640	0.61951				
Wages	83	85	102	35	23	1154	1640	0.7 366				
Supportive coworkers	121	132	69	4	2	1350	1640	0.82317				
		Total				3520	4920	72%				

On the job satisfaction variable, it has the highest average percentage among other variables, namely 72%, in this variable the dimensions of supportive coworkers have the highest percentage, which is 82%, this indicates that employees feel comfortable working with other colleagues and feel help each other in terms of profession. The lowest dimension is supporting working conditions, which is 61%, this is considered sufficient because it is more than >50%.

4. Conclusion

Workload has a negative effect on job satisfaction, work stress has a negative effect on job satisfaction, workload and work stress has an effect on job satisfaction, workload has a negative effect on employee performance, work stress has a negative effect on employee performance, job satisfaction has a positive effect on employee performance and the effect of workload, job stress and job satisfaction have a positive effect on employee performance. The indirect effect that occurs in this study is that job satisfaction is only able to become a pseudo-mediator on employee performance.

References

Handoko, T. Hani. 2012. Manajemen Personalia dan Sumber Daya Manusia. Yogyakarta. BPFE.

Mangkunegara A.A. Anwar Prabu. 2017. Manajemen Sumber Daya Manusia Perusahaan, Bandung : Remaja Rosdakarya.

Mangkunegara A. A. Anwar Prabu. 2014. Manajemen Sumber Daya Manusia Perusahaan.PT. Remaja Rosdakarya. Bandung.

Effect of Workload and Work Stress on Employees Performance Through Job Satisfaction as Intervening Variable in Rubber Plantation, Serdang II District, PT. Perkebunan Nusantara III (Watson AP Manalu, et al.)

- Munandar, A.S. 2001. Stress dan Keselamatan Kerja Psikologi Industri dan Organisasi. Penerbit Universitas Indonesia. Jakarta.
- Rivai, Veithzal. 2014. Manajemen Sumber Daya Manusia Untuk Perusahaan. Jakarta: Raja Grafindo Persada.

Robbins. 2015. Perilaku Organisasi. Jakarta: Salemba Empat

Robbins, Stephen P. dan A. Judge, Timothy. 2011. *Organizational Behavior*. Fourteenth Edition. New Jersey : Pearson education.

Sutrisno, E. 2012. Manajemen Sumber Daya Manusia. Jakarta: Kencana.

Sopiah. 2014. Perilaku Organisasi. Bandung. Andi

Utomo, T. W. W. 2008. Analisis Beban Kerja dalam Rangka Analisis Kebutuhan. Yogyakarta: Universitas Gajah Mada.